بررسی رفتار مصالح شن دار در بارگذاری زهکشی نشده مونوتونیک با استفاده از شبکه های عصبی مصنوعی
نویسندگان
چکیده
این مقاله امکان توسعه و بکارگیری شبکه های عصبی مصنوعی در مدل سازی نتایج آزمایش های مونوتونیک سه محوری قطر بزرگ روی انواع مصالح سنگریزه ای تیزگوشه، گردگوشه و مصالح شنی با درصدهای مختلف ریزدانه بهکار رفته در بدنه سدهای مهم کشور را ارائه می دهد. در ابتدا قابلیت شبکه های عصبی مصنوعی(anns) در مدل سازی منحنی های رفتاری تنش تفاضلی- اضافه فشار آب حفره ای - کرنش محوری بررسی شده است که دلالت بر قابلیت نسبتاً مناسب مدل در شبیه سازی رفتار مصالح شن دار دارد. بانک اطلاعات بکار رفته در شبکه، شامل 52 گزینه مختلف آزمایش سه محوری کرنش-کنترل تحت شرایط زهکشی نشده است. برای مسئله مورد نظر، یک برنامه شبکه های عصبی مصنوعی پیشخوراند سه لایه پرسپترون (mlp) در محیط matlab7 نوشته شد و شبکه بهینه (تعداد لایه های مخفی، تابع تبدیل و نوع آموزش شبکه) به طریق سعی و خطا، و با توجه به شاخص های خطا و تطابق با داده های آزمایشگاهی انتخاب شد. پارامترهای ورودی شبکه شامل تنش محدود کننده، دانسیته و درصد رطوبت بهینه، توزیع اندازه دانه ها و نرخ ایجاد کرنش می باشد. نتایج نشان می دهد که anns قابلیت بسیار مناسبی در تخمین منحنی های رفتاری یاد شده در کلیه موارد بررسی شده دارد. در ادامه قابلیت شبکه های عصبی مصنوعی(anns) در بدست آوردن حداکثر زاویه اصطکاک داخلی و نتاطی از منحنی های رفتاری شامل تنش های تفاضلی حداکثر و پسماند و اضافه فشارهای آب حفره ای در کرنش های نظیر بررسی شد. ضمناً از قابلیت تعمیم شبکه عصبی مصنوعی برای بررسی موارد آزمایش نشده مثل اثر تغییرات دانسیته و درصد کوچک تر از mm 2/0 هم بهره گرفته شد.
منابع مشابه
بررسی رفتار مصالح شندار در بارگذاری زهکشی نشده مونوتونیک با استفاده از شبکههای عصبی مصنوعی
این مقاله امکان توسعه و بکارگیری شبکههای عصبی مصنوعی در مدلسازی نتایج آزمایشهای مونوتونیک سهمحوری قطر بزرگ روی انواع مصالح سنگریزهای تیزگوشه، گردگوشه و مصالح شنی با درصدهای مختلف ریزدانه بهکار رفته در بدنه سدهای مهم کشور را ارائه میدهد. در ابتدا قابلیت شبکههای عصبی مصنوعی(ANNs) در مدلسازی منحنی های رفتاری تنش تفاضلی- اضافه فشار آب حفرهای - کرنش محوری بررسی شده است که دلالت بر قابلیت نس...
متن کاملپیش بینی رفتار تنش_کرنش مصالح شنی با استفاده از شبکه های عصبی مصنوعی
در این پژوهش رفتار مکانیکی مصالح درشت دانه شنی با استفاده از شبکه عصبی چند لایه پرسپترون، که از پرکاربردترین شبکه های عصبی مصنوعی در مسائل ژئوتکنیکی است، شبیه سازی شده است. ابتدا اطلاعات دقیقی از آزمون های منابع مختلف در سراسر کشور تهیه و عوامل مؤثر بر مقاومت برشی خاک های درشت دانه بررسی شده است. پس از حذف اطلاعات نادرست، روند یادگیری، آزمایش و پیش بینی شبکه طی شده است. در آموزش شبکه از الگو...
متن کاملبررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دستهبندیشده
بار رسوب جریان، شاخص مفیدی در پیشبینی فرسایش خاک در حوزههای آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب میتواند در مدیریت و اجرای پروژههای آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دستهبندی دادهها بهعنوان راهکاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانههای خلیفهترخان و چهلگزی در حوضۀ قشلاق...
متن کاملپیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از شبکه عصبی مصنوعی
رفتار تغییر شکل داغ مواد بدلیل وابستگی آن به تغییرات کرنش، نرخ کرنش و دما دارای پیچیدگی های قابل ملاحظه ای است و لذا پیش بینی رفتار ماده در این شرایط مشکل می باشد. هدف از این بررسی پیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از یک شبکه عصبی مصنوعی توسعه یافته مناسب می باشد. برای این منظور از آزمایشهای فشار داغ در محدوده دمایی بین 350 تا 500 درجه سلسیوس و در نرخ کرنشهای بین ...
متن کاملمدلسازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی
در این مطالعه آزمایشهای مزرعهای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنههای متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتیمتر، سرعتهای پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگینکننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکههای عصبی مدلسازی شده در این تحقیق که به منظور پیشبینی بازده کششی تراکتور مورد اس...
متن کاملتعیین ارزش داراییهای نامشهود با استفاده از شبکه عصبی مصنوعی
درک عوامل موثر بر ارزش شرکت برای سرمایهگذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایهگذاری یا اعطای تسهیلات، امری حیاتی است. از آنجایی که اقتصاد دانشمحور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر داراییهای فیزیکی به دانش نامشهود منتقل شده است. از اینرو در آینده نه چندان دور، ارزشگذاری داراییهای نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
زمین شناسی مهندسیجلد ۸، شماره ۲، صفحات ۲۰۷۱-۲۰۹۶
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023